
Between the Desirable and Reality

Ove Armbrust
March 13, 2013

2 March 13, 2013

• Why use agile development at all?

• Challenge #1: external context

• Challenge #2: internal context

• Challenge #3: documentation

• Conclusions

Contents

3 March 13, 2013

• In terms of the Agile Manifesto
– Self-organization – no central “project manager” instance

– Co-location – global knowledge shared amongst all team members

– Pair programming – two developers coding together

– Customer collaboration – daily interaction, shared ownership

– Incomplete requirements – changes in delivered product as they emerge

– Rapid delivery – release early, release often

– Limited documentation – “the documentation is in the code”

• Most prominent, defined process: SCRUM

Agile Development

Product Owner

Team

Scrum Master
Product
Backlog

Sprint
Backlog

Shippable
product

increment

Sprint

4 March 13, 2013

• Many tangible products contain major software portions

• Software accounts by far for most user-visible innovation

• Massive, late changes are the norm for software

• Software development must accommodate this
– Short innovation/release cycles

– Incorporate new features late during development

• Agile approaches facilitate that – so what is the problem?

Why agile development in classic non-software domains?

5 March 13, 2013

• Customers in “real-goods” industry often don’t think software
– They have a washer, an ECU, a head unit developed – not software

– They think in tangible goods development

– They are not from a software domain – they are concerned with hardware
availability, production costs, and profit per unit sold

– “Software can be changed at any time, with little effort, because it’s just
software”

• Customers often don’t know (or understand, or care about)
software development lifecycles
– In particular, agile approaches with constant, direct customer involvement

– They are not used to being involved in development on a daily basis –
possibly on site – and typically don’t support this approach

Challenges #1: non-agile context (external)

6 March 13, 2013

• Teach the customer some software development lifecycle
– Being able to change direction every month comes at a price

– Make that price understandable and explicit

• Replicate the customer locally as part of the team
– Dedicated team member who speaks for the customer

– Is in constant (daily!) contact with the customer

– Customer still needs to be willing to cooperate so closely – and allocate
time for this

– Costly solution – uses engineering resources to do the customer’s work

How to cope with a non-agile context (external)

7 March 13, 2013

• “Pair programming wastes two developers to do the job of one”

• Co-located development not always possible (global teams)

• Team focusing on one project hard to achieve, particularly in
small organizations

• Agile development transfers significant responsibility to the
developers and the team
– Team self-management increases freedom and

responsibility for team members – not everybody is
comfortable with this

– Team self-management means loss of control for
managers – not always accepted

Challenges #2: non-agile context (internal)

8 March 13, 2013

• True agile development (or SCRUM) means a radical change to
the complete organization, including titles, roles, management

• Major amounts of money, time, effort required for
transformation

• If this is not understood and supported 100% by all levels:
DON’T TRY TO FORCE IT

• Instead: build a process that support your goals
– Highly iterative project lifecycles (sprints), frequent customer releases

– Have a project manager – but estimate & schedule with complete team

– Daily short meetings for communication

– …

How to cope with a non-agile context (internal)

9 March 13, 2013

• Agile approaches are not only seen as better suited to react
quickly to changed requirements, but also as delivering more
product in less time
– This is achieved in part by omitting some documentation – “cut the slack”

– E.g., design documentation is limited

– But: classic system design incorporates reviews, for example for scalability

– What if there is no (complete) design to review?

• Global knowledge of development team may
lead to not documenting “trivial” aspects of
the software
– But: what if the software has to be maintained

for 10 years, by a different team?

Challenge #3: is vital documentation omitted?

10 March 13, 2013

• Anticipate insufficient documentation right from the beginning
– Define a feature as “completed” not as “there is working code”, but also

considering a minimal design documentation, reviews, …

– Have technical writers on the team, creating such documentation

• Plan consolidation & documentation sprints
– After ever 3rd/4th/5th/… feature development sprint, there is a

mandatory consolidation sprint where no new features are implemented

• If project time until deliver does not permit consolidation
sprints, plan them after delivery
– I.e., the team can’t start with the next project right away!

• All of the above require great discipline

How to cope with documentation omission

11 March 13, 2013

• Internal agile development challenges can be addressed
– But at high costs, and requiring major organizational changes

• External challenges are often outside our control
– We can’t force customers to work and think SCRUM-compliant

– This by itself prevents the application of approaches like SCRUM in their
entirety

• It is feasible and beneficial to adapt some agile
practices to yield their benefits

• Agile/sprint-based approaches require
more self-discipline by team members
than classic approaches

Conclusions

12 March 13, 2013

Questions?

Contact
Dr. Ove Armbrust

ove.armbrust@gmail.com

(310) 850-0793

Thank you!

mailto:ove.armbrust@gmail.com

